
Altair SLC Python procedure user guide
Version 2023

Altair SLC Python
procedure

user guide

Version: 2023.5
Copyright 2002-2023 World Programming, an Altair Company

www.altair.com

Altair SLC Python procedure user guide
Version 2023

Contents

PYTHON procedure.. 3
Introduction... 3
Setup and configuration... 4
Using Python with Altair SLC...5

Data type conversion... 6
Import custom Python modules... 8
Using graphics created by Python...10

Example.. 10
Python procedure reference... 12

PROC PYTHON.. 13
EXECUTE.. 14
EXPORT...16
IMPORT... 17
SUBMIT..18
ENDSUBMIT.. 18

Legal Notices.. 20

2

Altair SLC Python procedure user guide
Version 2023

PYTHON procedure
The PYTHON procedure enables SAS language programs to include code written in the Python
language.

Combining the Python language and the SAS language enables the bulk of a data processing and
analytics solution to be written in the industrial strength and high-performing SAS language, while also
exploiting features present in the Python language.

Introduction .. 3
The Python procedure enables SAS language programs to include code written in the Python
language.

Setup and configuration .. 4
Setting the Python environment for Altair SLC.

Using Python with Altair SLC ..5
Using Python in a SAS language program enables you to make use of specialist Python packages
such as Scikit-learn or Tensorflow.

Example ...10
Demonstrates how to use a SAS language dataset in PROC PYTHON to create a scatter plot
diagram.

Python procedure reference .. 12
Describes the syntax and options for PROC PYTHON and its contained statements.

Introduction
The Python procedure enables SAS language programs to include code written in the Python language.

By combining Python and the SAS language you can:

• Use the SAS language to bulk process and prepare data, and pass the processed data to Python.
• Use Python packages you have previously developed for data analysis.
• Use Python data analysis packages or solutions that may not be available in the SAS language.

Data is passed between the SAS language and Python language environments using the EXPORT
statement. Once data has been transferred, that data is made available as a pandas DataFrame to a
Python program. On completion of the Python program data can, if required, be returned to the SAS
language environment using the IMPORT statement.

3

Altair SLC Python procedure user guide
Version 2023

Setup and configuration
Setting the Python environment for Altair SLC.

When using Python with Altair SLC:

• The pandas package must be installed with the Python interpreter. This can be checked using the
pip utility by running pip list on the command line.

The Altair SLC distribution does not include either the Python interpreter or pandas package. If you do
not have Python installed, you can obtain a copy of the Python interpreter from https://www.python.org or
install a packaged Python environment that includes the necessary modules.

The PYTHON procedure can be used with Python version 3.5.0 and later, and is currently supported on
Microsoft Windows, Linux-based systems, and macOS.

The procedure is not currently supported on IBM mainframe.

Python environment variables
You must set the PYTHONHOME environment variable for Altair SLC to locate and use the Python
interpreter. This variable must reference the folder where the main Python library is located – for
example, python3.dll on Microsoft Windows.

Standard output and error streams
The Python standard output stream (sys.stdout) and standard error stream (sys.stderr) are
redirected to Altair SLC output when the procedure is run:

• sys.stderr is redirected to the log file.
• sys.stdout is redirected to the listing file when Altair SLC is run on the command line, or to all

specified ODS output destinations when Workbench is used.

If you use the Python print() function to put output to the listing file, the number of characters
appearing in the listing output is determined by the LINESIZE system option. The LINESIZE option can
be used to print strings of up to 256 characters; the use of the print() function should therefore be for
limited information such as log statements.

If you want to return large volumes of Python-generated content to Altair SLC, create a DataFrame
containing the required content and import the DataFrame using the IMPORT statement.

4

Altair SLC Python procedure user guide
Version 2023

The following example creates a list of functions available in the Python pandas package. The list is
printed using print (fnList) and also converted to a DataFrame.

PROC PYTHON;
SUBMIT;
import inspect
fnPandas = inspect.getmembers(pandas, inspect.isfunction)
fnList = [fn[0] for fn in fnPandas]
print (fnList)
fnTable = pandas.DataFrame({'function': fnList})
ENDSUBMIT;
IMPORT DATA=PANDAFN PYTHON=fnTable;
RUN;

The printed output truncates the list of functions:

['Expr', 'Term', 'bdate_range', 'concat', 'crosstab',
 'cut', 'date_range', 'eval', 'factorize',

When converted to a DataFrame and imported, all available functions are listed.

Using Python with Altair SLC
Using Python in a SAS language program enables you to make use of specialist Python packages such
as Scikit-learn or Tensorflow.

The first time the Python procedure is invoked in a SAS language program, the pandas and numpy
packages are automatically imported. You can access the functionality in the pandas and numpy
packages in an in-line Python language program – written between the SUBMIT and ENDSUBMIT
statements – by referencing the fully-qualified package, class or function name, for example:

PROC PYTHON;
 SUBMIT;
content = pandas.read_csv('file:///C:/project/sourcedata/example.csv')
...
 ENDSUBMIT;
 RUN;

Alternatively, you can use the import ... as ... statement to alias either the pandas or numpy
package name, for example:

PROC PYTHON;
 SUBMIT;
import pandas as pd
content = pd.read_csv('file:///C:/project/sourcedata/example.csv')
...
 ENDSUBMIT;
 RUN;

5

Altair SLC Python procedure user guide
Version 2023

Other Python packages can be imported and used within the in-line Python code, for example:

PROC PYTHON;
 EXPORT DATA=source;
 SUBMIT;
import statsmodels.formula.api as lm
result = lm.ols(formula='x ~ y + z', data=source).fit()
...
 ENDSUBMIT;
RUN;

Each subsequent use of the PYTHON procedure in a SAS language program can use the same Python
environment. This means any global variables or imported packages used in a PYTHON procedure
invocation are available to all subsequent PYTHON procedure invocations.

Each PYTHON procedure invocation can include multiple blocks of in-line Python language code, and
use a combination of in-line Python language code, and Python programs run using the EXECUTE
statement.

Data type conversion
Describes the correspondence between SAS language formats and pandas data types.

This section describes the correspondence between SAS language formats and Python pandas data
types. Altair SLC has many formats that affect the output and display of data. When you write data to a
pandas DataFrame using the Python procedure EXPORT statement, formatted data is converted to an
equivalent and pandas or numpy data type.

Many formats only affect the layout of data output, such as adding currency symbols or comma
separators, and these formats have no effect when writing data.

SAS language unformatted data to Python
Unformatted data is converted to a pandas DataFrame type as follows:

SAS language format Python data type Notes

Unformatted number float64

Unformatted string object The maximum object length for
a variable is not known as part of
the dataset metadata.

SAS language formatted data to Python – numbers
The core numeric formats are converted to a pandas DataFrame type as follows:

6

Altair SLC Python procedure user guide
Version 2023

SAS language format Python data type Notes

w.d Float64

BEST. and BESTw. float64

FLOATw.d float64

SAS language formatted data to Python – strings
The core character formats are converted to a pandas DataFrame type as follows:

SAS language format Python data type Notes

$w. $CHARw. $Fw. object The maximum object length for a
variable is not known as part of the
dataset metadata.

SAS language formatted data to Python – dates and times
Date, datetime and time formats are converted to a pandas DataFrame type as follows:

SAS language format Python data type Notes

DATEw. datetime64[ns] Numpy datetime type.
DDMMYYw. and all variants (such
as DDMMYYBw., MMDDYYSw.,
and YYMMw.)

datetime64[ns] Numpy datetime type.

DTDATEw. and all variants
(such as DTMONYYw. and
DTWKDATXw.

datetime64[ns] Numpy datetime type.

TIMEw., HOURw., HHMMw. and
all similar time formats.

float64

JULIANw. and all similar date
formats.

datetime64[ns] Numpy datetime type.

Python pandas data types to SAS language dataset
SAS language datasets only contain numeric and character data. Formats might be applied to the data in
the dataset to more closely represent the source data from Python. Importing a pandas DataFrame using
the IMPORT statement converts data as follows:

Pandas data type SAS language format Notes

Object Character The maximum object length is
calculated before importing.

int64 Numeric
bool Numeric True is converted to 1; False is

converted to zero (0).

7

Altair SLC Python procedure user guide
Version 2023

Pandas data type SAS language format Notes

Float64 Numeric
datetime64[ns] Numeric Formatted as DATETIME19.

Some values in Python cannot be represented in the same manner is a SAS language datasets. The
following table shows how these values are converted:

Pandas data value SAS language value Notes

null string ('') ' ' Missing character value.
True 1 Numeric value
False 0 (zero) Numeric value
NaN

Defined with float('nan')
. Missing numeric value

Infinity
Defined with float('inf')
Defined with float('-inf')

. Missing numeric value

Import custom Python modules
How to use your own packages and modules in Python.

To use custom packages, they must be accessible to Python. The paths to locations containing custom
packages are specified by the Python sys.path variable. The sys.path variable constructs a list of
locations to search using the PYTHONHOME and PYTHONPATH environment variables, or the
locations can be specified by modifying the value of the variable during the execution of a program.

• sys.path contains a list of folders searched for packages. The variable is constructed from the
values in PYTHONHOME and PYTHONPATH.

• PYTHONHOME specifies the location of the Python interpreter and standard libraries, including
packages installed into site-packages using a package manager such as PIP. The variable must be
specified for Altair SLC to interact with Python.

• PYTHONPATH specifies a list of folders to search for packages. This list is prepended to the search
list defined in sys.path.

The first item in sys.path is either the directory containing the python program or an empty string,
interpreted by Python as the current directory. When run from Altair SLC, sys.path[0] contains
the first search path specified in either PYTHONPATH or PYTHONHOME. If you program references
packages in the current directory, you must modify sys.path when PROC PYTHON is running. See
Modifying the sys.path variable (page 9)

8

Altair SLC Python procedure user guide
Version 2023

Set PYTHONPATH before running Altair SLC
The PYTHONPATH variable can be defined as a system variable, and used by all applications on your
device that run Python.

If you have multiple installations of Python, setting PYTHONPATH using a system variable might cause
your program to attempt to import the incorrect version of a package. In these circumstances, you should
set the variable as part of the SAS language program you run in Altair SLC.

Set PYTHONPATH in a SAS language program
The PYTHONPATH can be set in a SAS language program using the SET system option. For example,
to use packages stored in C:\temp\python folder, the following can be added to a program before the
PROC PYTHON statement:

OPTIONS SET = PYTHONPATH 'C:\temp\python';

If PYTHONHOME is specified as C:\python3, the content of the Python sys.path variable is:

['C:\\temp\\python', 'C:\\python3\\python37.zip',
 'C:\\python3\\DLLs', 'C:\\python3\\lib', 'C:\\python3',
 'C:\\python3\\lib\\site-packages']

Modifying the sys.path variable
The Python sys.path variable can be modified programmatically by adding the following to a Python
language program:

import os, sys
sys.path.append(os.getcwd())

If a Python language program run using the EXECUTE statement includes other Python files, add the
above as an in-line program before the executed program to enable Altair SLC to locate the included
files:

PROC PYTHON;
 SUBMIT;
import os, sys
sys.path.append(os.getcwd())
 ENDSUBMIT;
 EXECUTE 'programs/dataCollect.py';
RUN;

9

Altair SLC Python procedure user guide
Version 2023

Using graphics created by Python
Any graphics generated using functionality in Python are captured and can be included in ODS output.

When the procedure runs it creates the temporary variable wpsgloc that points to a temporary folder
used to store graphics for inclusion in ODS output. The variable must be added to the name of the image
file every time you create an image. This can be done using, for example, the os.path.join() Python
function:

PROC PYTHON;
SUBMIT;
import os
import matplotlib.pyplot as plt
...
plt.savefig(os.path.join(wpsgloc, 'my_image.png'))
ENDSUBMIT;
RUN;

The wpsgloc contains one of the following:

• The WORK location if the procedure is run in Altair Analytics Workbench; for example:

C:\Users\user-id\AppData\Local\Temp\Data

• The working directory if a program containing the procedure is run on the command line.

The variable cannot be modified in the SAS language program.

In the following program, the images created by the PYTHON procedure are written to the PDF file
specified in the ODS statement.

ODS PDF FILE='scatter_plot.pdf';
PROC PYTHON;
 EXPORT DATA=STATS PYTHON=df;
 SUBMIT;
import os
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='i', y='j')
plt.savefig(os.path.join(wpsgloc, 'scatter.png'))
 ENDSUBMIT;
RUN;
ODS PDF CLOSE;

Example
Demonstrates how to use a SAS language dataset in PROC PYTHON to create a scatter plot diagram.

The following example creates a dataset in a SAS language DATA step, and then uses the EXPORT
statement to pass that dataset to the Python environment. The dataset is converted to a pandas
DataFrame as part of the export, and the DataFrame is used to create a scatter plot using Matplotlib.

10

Altair SLC Python procedure user guide
Version 2023

An output PDF file destination is created using the SAS language Output Delivery System (ODS).
Adding PDF to the output destinations includes the returned scatter plot image file in the PDF output.
The PDF is saved and the output can be viewed in a PDF viewer.

This example requires the following Python packages:

• SciPy

• Matplotlib

ODS PDF FILE='scatter_plot.pdf';
DATA stats (drop = count);
 DO count=1 TO 10;
 DO numCount=1 TO 10;
 numVal = (numCount*numCount)+(count*count);
 OUTPUT;
 END;
 END;
RUN;

PROC PYTHON;
 EXPORT DATA=STATS PYTHON=df;
 SUBMIT;
import os
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='numCount', y='numVal')
plt.savefig(os.path.join(wpsgloc, 'scatter.png'))
 ENDSUBMIT;
RUN;
ODS PDF CLOSE;

This creates the following scatter plot in the ODS PDF output:

11

Altair SLC Python procedure user guide
Version 2023

Python procedure reference
Describes the syntax and options for PROC PYTHON and its contained statements.

PROC PYTHON .. 13
Invokes the Python environment that enables the execution of in-line or external Python language
programs.

EXECUTE ..14
Runs a Python program stored in a separate file.

EXPORT .. 16
Converts a SAS language dataset to a pandas DataFrame.

IMPORT ...17
Enables a pandas DataFrame to be converted to a SAS language dataset and referenced in a
SAS language program.

12

Altair SLC Python procedure user guide
Version 2023

SUBMIT ... 18
Specifies the start of an in-line Python language program.

ENDSUBMIT ..18
Specifies the end of an in-line Python language program.

PROC PYTHON
Invokes the Python environment that enables the execution of in-line or external Python language
programs.

PROC PYTHON

options

;

Datasets created in Altair SLC can be made available to the Python program using the EXPORT
statement, and a dataset imported from the Python program into Altair SLC using the IMPORT
statement.

A Python program can be either written in-line in the PYTHON procedure, or run from a separate file:

• To run an in-line Python program, use the SUBMIT and ENDSUBMIT statements.
• To run a Python program stored in an external file use the EXECUTE statement.

The Python environment is exited using a RUN statement.

When the Python environment is invoked, the pandas and numpy packages are automatically
loaded. These packages can be used either by quoting the full package name in code, or by using the
import ... as ... statement to alias the package name.

Options
The following options are available with the PROC PYTHON statement.

KEEP
Specifies that the current Python environment is not terminated when the procedure exits.

KEEP

When specified, the current Python environment is kept active when the current procedure exits,
and the environment is used in the next invocation of the Python procedure in the same program.
If that invocation does not specify KEEP, the environment is terminated when the procedure exits.

The default behaviour is to terminate the Python environment at the end of the procedure.
Specifying KEEP keeps the current Python environment, including any modules loaded during the
execution of a Python program, to be used in the next invocation of the PYTHON procedure.

You can specify the PYTHONKEEP system option to use the same Python environment for the
duration of the execution of the SAS language program.

13

Altair SLC Python procedure user guide
Version 2023

LIB
Specifies the library location for datasets used in the PYTHON procedure. The default location is
the WORK library.

LIB = library-reference

The library-reference location is used when libname is not specified as part of the path for the
DATA option of either the EXPORT or IMPORT statements.

TERMINATE
Specifies that the Python environment is terminated when the procedure exits.

TERMINATE

TERM

Specifying TERMINATE stops the current Python environment even if the PYTHONKEEP system
option has been specified. A subsequent invocation of PROC PYTHON in the same program only
has the default pandas and numpy packages loaded.

Example
The following example shows how to invoke the PYTHON procedure to print hello world to ODS
output.

PROC PYTHON;
SUBMIT;
print ('Hello World')
ENDSUBMIT;
RUN;

EXECUTE
Runs a Python program stored in a separate file.

EXECUTE " filename "

cmd-argument

;

The EXECUTE statement is an alternative to using the SUBMIT statement. It enables Python code placed
in a separate file to be run Altair SLC.

Execute options
The following options are available with the EXECUTE statement.

14

Altair SLC Python procedure user guide
Version 2023

filename
A string, in quotation marks, containing the path of the Python program file. filename can be either
an absolute pathname or a relative pathname.

In Workbench, the path for relative file pathnames is the Workspace. For example, to run a
file named myProgram.py from a project named python, the relative path is /python/
myProgram.py.

cmd-argument
Specifies a command line argument passed to the Python program. Arguments are accessed in
the programing from sys.argv.

All command line arguments are passed to the Python program as strings. Numeric arguments
must be in quotation marks, and the Python program must convert the arguments to the required
numeric type.

Basic example
In this example, a Python program stored in an external file is executed in the PYTHON procedure. The
file is referenced using the absolute path:

PROC PYTHON;
 EXECUTE 'C:\temp\printDS.py';
RUN;

Example – pass an argument to a Python program
In this example, an external Python program multiple.py is executed that returns the square of a
specified value. The value is specified in a variable.

import sys

def multiply (value):
 return value*value

print(multiply(int(sys.argv[0])))

multiple.py is executed from the PYTHON procedure in a SAS language program, and the required
value to multiply is passed to the Python program as an argument to the EXECUTE statement. The
numeric argument 6 is passed as a string. The Python program uses the built-in int() function to return
an integer before calculating the square.

PROC PYTHON;
 EXECUTE 'C:/temp/multiple.py' '6';
RUN;

This produces the following in ODS output:

36

15

Altair SLC Python procedure user guide
Version 2023

EXPORT
Converts a SAS language dataset to a pandas DataFrame.

EXPORT

SEND

DATA =

libname .

dataset

PYTHON = dataframe-name

;

Dataset preparation should be completed before exporting the data to Python. This enables you to use
the dataset processing capability of the SAS language to create an export dataset containing only the
required data for the Python language program.

Export options
The following options are available with the EXPORT statement.

DATA
Specifies the dataset location and name of the SAS language dataset to be converted.
The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC PYTHON statement.

• If libname is specified, that location is always used.
• If the LIB option of the PROC PYTHON statement is specified and libname is not specified, the

location in the LIB option is used.
• If neither libname nor the LIB option on the PROC PYTHON statement are specified, the WORK

location is used.

PYTHON
Specifies the name of the pandas DataFrame as used in the Python language program.

The pandas DataFrame name in Python language code is case sensitive, and the
dataframe-name specified must match the case used of the Python variable name.

If this option is not specified, the dataframe-name default is the dataset name specified in the
DATA option. If you use the default dataset name in an in-line Python language program, the
variable name must match the case used in the DATA option.

16

Altair SLC Python procedure user guide
Version 2023

Example – export a SAS language dataset to a pandas DataFrame
The following example creates a dataset in a SAS language DATA step. The dataset is then exported to
a pandas DataFrame and the column types printed out.

DATA TESTDATA;
INFILE CARDS DLM='#';
INPUT num char $;
CARDS;
1 # Hello
2 # World
;
RUN;

PROC PYTHON;
EXPORT DATA=TESTDATA PYTHON=dframe;
SUBMIT;
print (dframe)
ENDSUBMIT;
RUN;

Which writes the following to ODS output:

 num char
0 1.0 Hello
1 2.0 World

IMPORT
Enables a pandas DataFrame to be converted to a SAS language dataset and referenced in a SAS
language program.

IMPORT

RECV

PYTHON = dataframe-name

DATA =

libname .

dataset ;

Import options
The following options are available with the IMPORT statement.

DATA
Specifies the dataset location and name as used in Altair SLC.
The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC PYTHON statement.

• If libname is specified, that location is always used.

17

Altair SLC Python procedure user guide
Version 2023

• If the LIB option of the PROC PYTHON statement is specified and libname is not specified, the
location in the LIB option is used.

• If neither libname nor the LIB option on the PROC PYTHON statement are specified, the WORK
location is used.

PYTHON
Specifies the name of the pandas DataFrame as used in the Python environment. Must be
specified.
dataframe-name is case sensitive and must match the case used for the imported pandas
DataFrame in the Python program.

SUBMIT
Specifies the start of an in-line Python language program.

SUBMIT ;

An in-line program is defined as part of the PYTHON procedure in a SAS language program. The
SUBMIT statement marks the start of the program, and the ENDSUBMIT statement marks the end.

The Python language program must start on a new line after the SUBMIT statement, and the ENDSUBMIT
statement must appear at the beginning of a line on its own. The first line of the Python program code
must not start with any white space and any subsequent statements must follow the normal Python
requirements for indentation, for example:

PROC PYTHON;
 SUBMIT;
fruits = ['apple', 'banana', 'cherry', 'damson', 'elderberry', 'fig']
for fruit in fruits:
 print(fruit)
 ENDSUBMIT;
RUN;

Multiple in-line Python language programs can exist in a single PYTHON procedure. Each Python
language program is executed as it is encountered. Variables defined in one in-line language program
can be used in subsequent in-line programs in the same Python procedure.

ENDSUBMIT
Specifies the end of an in-line Python language program.

ENDSUBMIT ;

18

Altair SLC Python procedure user guide
Version 2023

The ENDSUBMIT statement must be entered at the start of a new line after the Python language
program.

19

Altair SLC Python procedure user guide
Version 2023

Legal Notices
Copyright 2002-2023 World Programming, an Altair Company

This information is confidential and subject to copyright. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage and retrieval system.

Trademarks
Altair SLCTM, Altair Analytics WorkbenchTM, and Altair SLC HubTM are registered trademarks or
trademarks of Altair Engineering, inc. (r) or ® indicates a Community trademark.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

All other trademarks are the property of their respective owner.

General Notices
Altair Engineering, inc. is not associated in any way with the SAS Institute.

Altair SLC is not the SAS System.

The phrases "SAS", "SAS language", and "language of SAS" used in this document are used to refer to
the computer programming language often referred to in any of these ways.

The phrases "program", "SAS program", and "SAS language program" used in this document are used to
refer to programs written in the SAS language. These may also be referred to as "scripts", "SAS scripts",
or "SAS language scripts".

The phrases "IML", "IML language", "IML syntax", "Interactive Matrix Language", and "language of IML"
used in this document are used to refer to the computer programming language often referred to in any
of these ways.

Altair SLC includes software developed by third parties. More information can be found in the THANKS
or acknowledgments.txt file included in the Altair SLC installation.

20

	Contents
	PYTHON procedure
	Introduction
	Setup and configuration
	Using Python with Altair SLC
	Data type conversion
	Import custom Python modules
	Using graphics created by Python

	Example
	Python procedure reference
	PROC PYTHON
	EXECUTE
	EXPORT
	IMPORT
	SUBMIT
	ENDSUBMIT

	Legal Notices

